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Unit 6 Part 11 Readings – Extrema
Extrema
	The maximum or minimum over the entire function is called an "Absolute" or 
"Global" maximum or minimum. There is only one global 
maximum (and one global minimum) but there can be more than one local 
maximum or minimum.
Maximums and minimums occur where the slope = 0 or is undefined changing from
If f(x)' changes from positive to negative at point x = c, then the curve is 
increasing to decreasing and c is a relative maximum
If f(x)' changes from negative to positive at point x = c, then the curve is changing from
decreasing to increasing and c is a relative minimum
If f(x)' does not change sign at point x = c, then c is neither a relative maximum nor 
minimum
Inflection Points
An inflection point is a point on the graph of a function at which the concavity changes
Points of inflection can occur where the second derivative is zero
Solve f '' = 0 to find the potential inflection points.
Concavity
Geometrically, a function is concave upward on an interval if its graph behaves like a 
portion of a parabola that opens upward. Likewise, a function that is concave 
downward on an interval looks like a portion of a parabola that opens downward. If the graph of a function is linear on some interval in its domain, its second derivative 
will be zero, and it is said to have no concavity on that interval.
A function is said to be concave upward on an interval if f″(x) > 0 at each point in 
the interval and concave downward on an interval if f″(x) < 0 at each point in 
the interval
In determining intervals where a function is concave upward or concave downward, first 
find domain values where f″(x) = 0 or f″(x) does not exist. Then test all intervals around these values in the second derivative of the function. If f″(x) changes sign, then ( x, f(x)) is a point of inflection of the function.
As with the First Derivative Test for Local Extrema, there is no guarantee that the 
second derivative will change signs, and therefore, it is essential to test each interval around the values for which f″(x) = 0 or does not exist.
Monotonicity
	A function is called “increasing” (or non-decreasing) if its values are only rising and 
never falling with increasing values of x
It is strictly increasing if values always become larger and cannot be constant
A function is called “decreasing” (or non-increasing) if its values are only falling and 
never rising with increasing values of x
It is strictly decreasing if values always become smaller and cannot be constant
If a function f(x) is differentiable on the interval (a,b) and belongs to one of the four 
considered types (i.e. it is increasing, strictly increasing, decreasing, or strictly 
decreasing), this function is called monotonic on this interval
	To determine monotonicity, we take the root of the derivative (where dy/dx=0)
If the derivative has at least one root, the entire function cannot be strictly increasing or 
strictly decreasing, but we can still determine its monotonicity in the intervals 
between the roots by evaluating the derivative equation at a point in the interval
	If there is no root, evaluate the derivative equation at any point to determine that the 
function is strictly increasing if it is positive, or strictly decreasing if it is negative
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