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Unit 8 Part 16 Readings: Transforms

Integral Transforms
An integral transform is a particular kind of 
mathematical operator
An integral transform is any transformed function Tƒ:
Tƒ(u) = 
The input of this transform is a function ƒ, and the 
output is another function Tƒ
Howcum?
There are many classes of problems that are hard to 
solve in their original form
An integral transform "maps" an equation from its 
original "domain" into another domain
Manipulating and solving the equation in the target 
[image: ]domain can be much easier 
The solution is then mapped back to the 
original domain with the inverse of the integral transform
Fourier Series
Using the Fourier series, just about any 
practical function of time (the 
voltage across the terminals of 
an electronic device for example) 
can be represented as a sum of 
sines and cosines, each suitably 
scaled (multiplied by a constant 
factor), shifted (advanced or 
retarded in time) and "squeezed" 
or "stretched" (increasing or 
decreasing the frequency)
Fourier Transforms
[image: ]The Fourier transform 
decomposes a function of time (a signal) into the frequencies that make it up, similarly to how a musical chord can be expressed as the amplitude (or loudness) of its constituent notes
For many functions of practical interest one can define an 
operation that reverses this: the inverse Fourier transformation, also called Fourier synthesis, of a frequency domain representation combines the contributions of all the different frequencies to recover the original function of time
Any linear time-invariant system, such as an electronic filter 
applied to a signal, can be expressed relatively simply 
as an operation on frequencies


Significant simplification is often achieved by transforming time functions to the 
frequency domain, performing the desired operations, and transforming the result 
[image: ]back to time
[image: ]Joseph Fourier introduced the transform in his study of heat transfer


The Laplace Transform 	
Laplace Transforms are used to reduce a differential equation to 
an algebra problem
[image: http://www.gap-system.org/~history/BigPictures/Laplace_2.jpeg]The Laplace Transform is especially useful when the initial 
values are zero

The Laplace Transform is widely used in electronic engineering 
applications, especially where the driving force is 
discontinuous
The Laplace Transform is often used in circuit analysis, and 
simple conversions to the s-Domain of circuit elements 
can be made 
Circuit elements can be transformed into impedances, very 
similar to phasor impedances
The techniques of Laplace Transform are not only used in circuit analysis, but also in
Proportional-Integral-Derivative (PID) controllers
DC motor speed control systems
DC motor position control systems
Second order systems of differential equations (underdamped, overdamped and 
critically damped) 
The Laplace transform of a function (t) for t > 0 is defined by the following integral defined over 
0 to ∞:
L{ƒ(t)} = ∫0∞ e – pt ƒ(t) dt

The resulting expression is a function of p, which we write as F(p). In words we say: 
The Laplace Transform of  ƒ(t) equals function F of p
and write:   L {ƒ(t)} = F(p)
Similarly, the Laplace transform of a function g(t) would be written:   L {g(t)} = G(p)
An inverse Laplace transform brings back the original function
If G(p) = L {g(t)}, then the inverse transform of G(p) is defined as: 
L 1G(p) = g(t)						(Use invlap on the TI89)
Notation: 
A Laplace transform is symbolized by: L or 
It is common to indicate time domain quantities as lower case such as ƒ or ƒ(t)
Common practice is also to use upper case for the Laplace domain (or the complex 
frequency domain), such as F
Sometimes upper case is used for DC quantities and lower case for AC quantities
We will use ƒ(s) for the Laplace domain to make it very clear 
British practice is to use p for s (this is used on the TI89 App)



Table of Laplace Transforms

	
Time Function ƒ(t) 
  ƒ(t) = L-1{F(s)}
	Laplace Transform of ƒ(t)
F(s) = L{ƒ(t)}

	1
	                 s > 0

	t (unit-ramp function)
	                s > 0

	t n (n, a positive integer)
	             s > 0

	eat
	              s > a

	sin ωt
	         s > 0

	cos ωt
	               s > 0

	tng(t), for n = 1, 2, ...
	

	t sin ωt
	      s > |ω|

	t cos ωt
	        s > |ω|

	g(at)
	    Scale property

	eatg(t)
	G(s − a)   Shift property

	eattn, for n = 1, 2, ...
	       s > a

	te-t
	        s > –1

	1 − e-t/T
	       s >  

	eatsin ωt
	      s > a

	eatcos ωt
	      s > a

	u(t)
	      s > 0

	u(t − a)
	    s > 0

	u(t − a)g(t − a)
	   Time-displacement theorem

	g'(t)
	sG(s) − g(0)

	g''(t)
	s2G(s) − sg(0) − g' (0) 

	g(n)(t) 
	sn G(s) − sn-1 g(0) − sn-2 g'(0) − ... − g(n-1)(0)

	
	

	
	


[image: 1_lap_unitstepfns_18pt__10.png]The Heaviside (Unit Step) Function
Definition: The unit step function, u(t), is defined as    0    t < 0
1    t > 0
{


   u(t ) =                                   

That is, u is a function of time t, 
and u has value zero when time is 
negative (before we flip the switch); 
and value one when time is positive 
(from when we flip the switch).

The sketch of the waveform is: 


Rectangular Pulse
A common situation in a circuit is for a voltage to be applied at a particular time 
(say t = a) and removed later, at t = b (say). 0    	   t < a
1	  a <t < b 
0    	   t > b 
{

[image: 1_lap_unitstepfns_18pt__27.png]
      V(t ) =                                   


Such a situation is written using unit 
step functions as:
V(t) = u(t − a) − u(t − b)
This voltage has strength 1, 
duration (b − a).
Example:  The graph of: 
V(t) = u(t − 1.2) − u(t − 3.8) is: 

Here, the duration is 3.8 − 1.2 = 2.6.


[image: Diagram, schematic

Description automatically generated]Using the TI89 to solve Laplace transforms
Use the downloaded Laplace function
Home CATALOG F4 select LAPL, 
enter the DiffEq, comma, 
the independent variable 
(on the bottom of the derivative ratio),
 close parenthesis, enter
Tah Dah!
The @ numbers are the constants "C" or "K" 
The "s" on this Laplace Transforms sheet 
is a "p" on the TI89 
For inverse Laplace, use invlap on the TI89




[image: Diagram, schematic

Description automatically generated]
[image: A picture containing text

Description automatically generated]
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